Strategy for a better environment based on a benchmark simulation model for integrated urban wastewater systems

Ramesh Saagi
IEA, Lund University, Sweden
OUTLINE

01 INTRODUCTION: BSM-UWS
02 CASE 1: INTEGRATED CONTROL
03 CASE 2: INFLUENT GENERATION
04 CASE 3: NEW MODEL DEVELOPMENT
INTRODUCTION
URBAN WASTEWATER SYSTEM

CATCHMENT

SEWER NETWORK

WASTEWATER TREATMENT PLANT

RECEIVING WATER SYSTEM
INTRODUCTION

BSM-UWS

BSM-UWS characteristics

Area: 550 ha
PE: 80 000
Average dry weather flow (m3/d): 19 000 m3/d
Total storage volume: 22 000 m3
River length: 30 km
CASE 1: INTEGRATED CONTROL

Modifying the bypass at WWTP based on river water quality
CASE 1: INTEGRATED CONTROL

Modifying the bypass at WWTP based on river water quality

WWTP bypass

- Flow rate (m3.d$^{-1}$)
 - 0.0
 - 5.0e+3
 - 1.0e+4
 - 1.5e+4
 - 2.0e+4

River stretch at WWTP effluent

- NH$_4^+$ (g N.m$^{-3}$)
 - 0.0
 - 1.0
 - 2.0
 - 3.0
 - 4.0
CASE 2: INFLUENT GENERATION

Influent generation for Henriksdal WWTP, Stockholm
CASE 2: INFLUENT GENERATION

Influent generation for Henriksdal WWTP, Stockholm

Calibration results for the influent flow rate at Henriksdal WWTP at 15 min intervals (left) and daily average values (right) for the year 2012.
CASE 2: INFLUENT GENERATION

Influent generation for Henriksdal WWTP, Stockholm

Weekly average influent COD (left) and NH$_4$-N (right) concentrations predicted by the model (blue) compared to the weekly composite measurements (grey) at Henriksdal WWTP for the year 2012.
CASE 3: NEW MODEL DEVELOPMENT

Modelling heat transfer in sewer system
CASE 3: NEW MODEL DEVELOPMENT

Modelling heat transfer in sewer systems

Modelled temperature variation

Change in temperature with sewer length

- Input
- Output (10 km)

Temperature (°C)

Time [d]

Temperature (°C)

Sewer length (km)

- in
- 5 km
- 10 km
- 15 km
- 20 km

- 20.0
- 19.0
- 18.1
- 17.3
- 16.6
THANK YOU